Right riemann sum

by jvadair

arrow_back_ios_new

Card image

\int_a^bf\left(x\right)dx\ =\ \lim_{n\rightarrow\infty}\sum_{k=1}^nf\left(\frac{b-a}{n}k\right)\cdot\frac{b-a}{n}\

\int_a^bf\left(x\right)dx\ =\ \lim_{n\rightarrow\infty}\sum_{k=1}^nf\left(x_k\right)\cdot\Delta x

arrow_forward_ios

arrow_back_ios_new

arrow_forward_ios

school Study

share Share

more_horiz

expand_more    Scroll for list view...    expand_more

2 cards

1
Card image

\int_a^bf\left(x\right)dx\ =\ \lim_{n\rightarrow\infty}\sum_{k=1}^nf\left(\frac{b-a}{n}k\right)\cdot\frac{b-a}{n}\

\int_a^bf\left(x\right)dx\ =\ \lim_{n\rightarrow\infty}\sum_{k=1}^nf\left(x_k\right)\cdot\Delta x

2

x^2

x^2